Compression of Rewriting Systems for Termination Analysis

نویسندگان

  • Alexander Bau
  • Markus Lohrey
  • Eric Nöth
  • Johannes Waldmann
چکیده

We adapt the TreeRePair tree compression algorithm and use it as an intermediate step in proving termination of term rewriting systems. We introduce a cost function that approximates the size of constraint systems that specify compatibility of matrix interpretations. We show how to integrate the compression algorithm with the Dependency Pairs transformation. Experiments show that compression reduces running times of constraint solvers, and thus improves the power of automated termination provers. 1998 ACM Subject Classification F.1.1 Models of Computation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

24 th International Conference on Rewriting Techniques and Applications

Logical Model Checking of Infinite-State Systems Using Narrowing Kyungmin Bae, Santiago Escobar, and José Meseguer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Compression of Rewriting Systems for Termination Analysis Alexander Bau, Markus Lohrey, Eric Nöth, and Johannes Waldmann . . . . . . . . . . . . 97 A Variant of Higher-Order Anti-Unification Alexander Baumgartner, Temur Kut...

متن کامل

Termination of term rewriting using dependency pairs

We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left-and right-hand sides of rewrite rules, but introduce the notion of dependency pairs to compare left-hand sides with special subterms of the right-hand sides. This results in a technique which allows to apply existing methods for...

متن کامل

توسعه روش SL با ترتیب KBO برای اثبات خودکار پایان‌پذیری سیستم بازنویسی ترم - مقاله برگزیده هفدهمین کنفرانس ملی انجمن کامپیوتر ایران

 The term rewriting systems (TRSs) is an abstract model of functional languages. The termination proving of TRSs is necessary for confirming accuracy of functional languages. The semantic labeling (SL) is a complete method for proving termination. The semantic part of SL is given by a quasi-model of the rewrite rules. The most power of SL is related to infinite models that is difficult f...

متن کامل

A Structural Analysis of Modular Termination of Term Rewriting Systems

Modular properties of term rewriting systems, i.e. properties which are preserved under disjoint unions, have attracted an increasing attention within the last few years. Whereas connuence is modular this does not hold true in general for termination. By means of a careful analysis of potential counterexamples we prove the following abstract result. Whenever the disjoint union R 1 R 2 of two ((...

متن کامل

Termination Analysis for Graph Transformation Systems

We introduce two techniques for proving termination of graph transformation systems. We do not fix a single initial graph, but consider arbitrary initial graphs (uniform termination), but also certain sets of initial graphs (non-uniform termination). The first technique, which can also be used to show non-uniform termination, uses a weighted type graph to assign weights to graphs. The second te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013